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The following slides are borrowed
from the talks to show some
highlights - please see the
individual talks for details!
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Hydra Fast Facts

e Hydralooks at a finer time scale then any higher level monitoring the shift crew
performs. Approximately every minute

—  Because who hits reset?
®  Operates (conservatively) at about 3-4Hz

—  From receiving an image to action ~300ms. Most of the time spent on
model inference

— Inference accounts for ~71% of the total processing time and is
driven primarily by model size

e Currently focused on go/no-go decisions

—  Doctor classifying you as sick with no diagnosis as to what you are sick

with. Refinement underway Koboldpress.com

HydraRun also saw the FDC problem, which | probably would have missed inspecting it by eye.
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Model predictions and feature evaluation

—— truth line
0.19 « 2020
2018
0.18
[V S
(@]
O 0.17
el
[
i
© 0.16
Q
Q
0.15
0.14
PRELIMINARY
0.14 0.15 0.16 0.17 0.18 0.19

existing GCF

Al for Experimental Controls at Jefferson Lab

PSC_MEAN

PSC_MAX

PSC_SIGMA

currenT Il
suM_A | mAx |
sum_A I Mean |
PRESSURE (MMHG) |

MEAN_B_MEAN |
MAX_A_MEAN |

PS_MEAN_OVER_CURRENT l mm Class 0

0000 0002 0004 0006 0008 0010 0012 0014
mean(|SHAP value|) (average impact on model output magnitude)

10 Jeffer$on Lab




Recap + Ongoing work

Recap:

* Predict existing gain calibration constants with
chan)ging experimental conditions (2018 vs 2020
data

 Established boundary for operating voltage of
CDC based on previous run periods

Ongoing work:

 Evaluating CDC resolution with predicted
calibration constants

« Time to Distance model development in
progress

* Incorporating physics information into model

 Application to CLAS12 Drift Chambers located in
Hall B
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Contact information:
— Torri Jeske | roark@jlab.org

— Diana McSpadden |
dianam@jlab.org
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Real-Time Analysis

Run 1 Run 2 Run 3: GPU-enhanced
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GPU-enhanced option greatly increases our discovery potential in Run 3!




Summary

¢ | HCb successfully managed to calibrate — and fully reconstruct — all data in real time in
Run 2.

* Since 2011, we have used ML-based selections in our primary trigger algorithms. Roughly
400 LHCDb papers thus far are based on ML-selected data. These were based on a
discretization method; a novel NN architecture has been developed for Run 3.

e Since 2015, fake tracks and clusters have been rejected in real time using NNSs.

¢ Since 2016, NN-based particle ID selections have been used in the real-time selections.
Several high-profile results published in Run 2 were only possible because of the
performance increases provided by ML.

¢ In Run 3, we are removing our hardware trigger and will process every event in a GPU-
based application that will track all particles with a very low pT threshold (and possibly do
much more).

* Many other studies are underway to expand the use of real-time Al in Run 3 and beyond!




Modeling trigger “cost” using CMS open data

[NeurlPS 2020 WS] Self-Driving Trigger Paper ——
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Thursday Septem-t;éf 9th, 72”(5211 Self—[Sriving'W-’rigger - AI&EIC Sept 2021 - David W. Miller
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Summary and
conclusions

Thursday September 9th, 2021

Self-Driving Trigger - AI4EIC Sept 2021 - David W. Miller
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SONIC

Services for Optimized Network Inference on Coprocessors

Flexible - optimize the hardware based on task; no need
to support many ML frameworks in experiment software

Adaptable - right-size the system to the task, you choose
the number of coprocessors based on computing needs

Scalable - coprocessor need not be co-located next to
existing CPU infrastructure; common software framework
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ML Future Directions /| Needs for Accelerator R&D

Uncertainty quantification

- Detect when model may not be accurate (e.g. outside training range)
- Leverage for safe exploration of parameter space

Active learning

- Retraining to account for drift or adapt during search
- Sampling strategies to efficiently explore large parameter space + generate training data (maximize information with the least samples)

Efficient ways to handle high dimensional data:

- Images, 6D phase space
- More variables (full accelerator vs. small test cases)

Physics-informed / constrained ML

- Improve robustness / generalization to unseen regions of parameter space
- Reduce need for additional data
- Extract physics from measured data

Differentiable Simulators

- Wide range of types of simulation codes for accelerators (analytic matrix transport codes, particle-in-cell) > relatively unexplored area

Interpretability

- Important for ML-based tuning, identifying physic underpinning a prediction

Many shared challenges with other SciML domains = accelerators are unique test beds for these kinds of problems



Summary

There are many interconnected topics related to real time calibration, analysis,
and control for both detectors and accelerators.

The talks in our session covered specific examples, but also many of the speakers
provided a broader context.

There are clear paths for synergy between EIC, LHC, and other particle/nuclear
experiments and other accelerator complexes. We look forward to future
discussions, innovation, and progress!



